GARCH-Type Models and Performance of Information Criteria
نویسندگان
چکیده
GARCH model has gained popularity during the last two decades, because of their ability to capture non-linear dynamics in the real life data which we often observe especially in financial markets. This paper discuss four common information criteria (AIC, AICc, BIC and HQ) and their ability of correct selection in the presence of GARCH effect, based on their probability of correct selection as a measure of performance. The investigation has been performed using Monte Carlo simulation of conditional variance GARCH processes with six different kinds of DGPs including; GARCH(p, q), p = 1, 2 and q = 1, 2, GARCH(1, 1)-Leverage, and GARCH(1, 1)-Spillover. All these models are further simulated with different parameter combinations to study the possible effect of different volatility structures on these information criteria. We notice an impact from the volatility structure of time series on the performance of these criteria. Specially for higher order GARCH processes, the BIC and HQ criterion select the lower order process at small sample size. Furthermore, we observe different behavior of information criteria for changing the parameter set in higher order case. Moreover, the influence of sample size, having an impact on the the performance of these criteria towards correct selection, is observed.
منابع مشابه
The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملComparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملکاربرد روش شبکه عصبی مصنوعی و مدلهای واریانس ناهمسانی شرطی در محاسبه ارزش در معرض خطر
ریسک بازار از عدم اطمینان در خصوص بازدهی آتی دارائیها در بازار نشأت میگیرد. امروزه معیارهای مختلفی برای بررسی انواع ریسک مرتبط با بازار، سبدهای مختلف دارائی، صنایع و ... به کار میروند. اما هر چند این معیارهای مختلف، اطلاعات ارزشمندی را برای فعالان بازار به همراه میآورند، لیکن هر یک به تنهایی نمیتوانند اطلاعات جامع و کاملی را در خصوص ریسک بازار و یا سبد سهام به دست دهند. به همین منظور، «ارز...
متن کاملModeling the Province Wise Yield of Rice Crop in Pakistan Using GARCH Model
In our present study, GARCH family models are used for modeling and forecasting the rice yield of four provinces of Pakistan during the period of 1947-48 to 2008-09. Also Auto regressive, moving average and Autoregressive moving average models are described. Thus, the selected GARCH models for all provinces are also presented for forecasting purpose on the basis of two criteria AIC (Akaike info...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 42 شماره
صفحات -
تاریخ انتشار 2013